The Intelligent Disk (IDISK): A Revolutionary Approach to Database Computing Infrastructure

Kimberly Keeton, David A. Patterson, Joseph Hellerstein, John Kubiatowicz, and Katherine Yelick

UC Berkeley Computer Science Division {kkeeton,patterson,jmh,kubitron,yelick}@cs.berkeley.edu http://iram.cs.berkeley.edu/

Characteristic	DSS	OLTP		
Business question	Historical: support for forming business decisions	Operational: day-to- day business transactions		
Industry benchmark	TPC-D	TPC-C		
Query complexity	Long, very complex queries	Short, moderately complex queries		
Portion of DB accessed per query	Large	Small		
Type of data access	Read-mostly	Read-write		
How are updates propagated?	Periodic batch runs or background "trickle" streams	Through most transaction types		

Motivation: Increasing Compute and I/O Needs

* Greg's Law: Greg Papadopoulos, CTO, Sun Microsystems

- DSS database I/O demand growth: 2X / 9 months
- I/O capacity and associated processing
- * Contributing factors:
 - Collect richer data (i.e., more detailed)
 - "Just-in-time" inventory: connect sales to suppliers
 - Keep longer historical record
 - Growth of digital data
 - Business consolidation
- ★ Winter VLDB Survey (1997):
 - Telecomm., retail & financial DBs ~doubled from 1996 to 1997
 - "Wal-Mart says that a major obstacle to its VLDB plans is that hardware vendors can barely keep up with its growth!"

5

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Limitations of Current DSS Architecture

* Experimentally, central CPUs are the bottleneck

- Processing, storage capacity don't scale easily w/ Greg's Law
- * Desktop processors not tailored to DB applications
 - Somewhat better memory system behavior than TPC-C
 - CPI for TPC-D query 1 ~1.35 (Pentium Pro)
 - CPI for TPC-C ~3.39 (Pentium Pro)
- * Limited I/O bus growth rates
- * Memory system performance: bandwidth and latency
- * Expensive!
 - Central processors and dense memory
 - Cabinets and plumbing handle max configuration

Execution Characteristics of TPC-D Workload

* Experimentally, central CPUs are the bottleneck

- Somewhat better memory system behavior than TPC-C
 - CPI for TPC-D query 1 ~1.35
 - CPI for TPC-C ~3.39

* Typical operations

- Scan, aggregates (e.g., min, max, count) & 1-pass, 2-pass sort/join
- Avg. 500-2000 instructions/record (DBMS-, query-specific)
- 200 B/record; <= 6 tables/query
- Records are read 1-2x, written 0-1x
- \star I/O pattern tends to be sequential
 - 8KB 4MB reads; 8KB 64KB writes (DBMS-specific)
 - Index scan may be more random (DBMS-specific)
- ★ Full storage requirements about 2-5x database size

10

Processor	Digital	MIPS	MIPS	Digital	Intel
	SA-110	R5000	R10000	21164	Pentium I
Clock rate	233 MHz	200 MHz	200 MHz	600 MHz	300 MHz
Cache size	16K/16K	32K/32K/ 512K	32K/32K/ 4M	8K/8K/96K/ 2M	16K/16K/ 512K
IC process	0.35 µ 3M	0.35 µ 3M	0.35 µ 4M	0.35 μ 4M	0.28 µ 4M
Die size	50 mm^2	84 mm ²	298 mm ²	209 mm ²	203 mm ²
SPEC95 base (i/f)	n/a	4.7/4.7	10.7/17.4	16.3/19.9	11.6/6.8
Dhrystone	268 MIPS	260 MIPS	203 MIPS	920 MIPS (est.)	n/a
Power	0.36 W	10 W	30 W	25 W	30 W
Est. mfrs. cost	\$18	\$25	\$160	\$125	\$90

+ High on-chip memory B/W, low on-chip memory latency

- Small on-chip memory capacity

Disk Processing for Databases Not a New Idea

- ★ Late 70s, early 80s: database machines
- ★ Several flavors: central host processor +
 - Processor per {head, track, disk}
 - Multiprocessor cache
- * After much enthusiasm, failed because:
 - Didn't use commodity hardware
 - Tremendous performance gains for scans didn't justify cost
 - Provided performance improvements only for simple operations (e.g., scans), but not for more complicated operations (e.g., joins)
- ★ Why should IDISK succeed now?
 - Disk with processor+memory can be commodity part
 - Algorithmic advances of last 15 20 years
 - Parallel, cluster-based ("shared nothing") join, sort algorithms

IDISK Software Architecture

* What is software model for IDISK? Alternatives:

- Run complete DB server + OS on each disk processor
- Run all of storage/data manager on each disk node
- Run small portion of storage manager on each disk node (*)
 - Each disk contains library of kernel operations (scan, join, etc.)
 - Download "arbitrary" user code
 - Use secure programming environment (e.g., Java)?
- * Leverage algorithms that trade I/O bandwidth for memory capacity
 - How well will these work in very memory-constrained environment?

SMP Characteristic	1 TB System	3 TB System	10 TB System	
Processors	64 * 1000 MHz	64 * 1000 MHz	64 * 1000 MHz	
Memory capacity	64 GB	256 GB	256 GB	
SMP Interconnect B/W	30,000 MB/s	30,000 MB/s	30,000 MB/s	
Memcpy B/W	15,000 MB/s	15,000 MB/s	15,000 MB/s	
Disk capacity	200 * 36 GB	600 * 36 GB	1800 * 36 GB	
Disk transfer rate	29 MB/s	29 MB/s	29 MB/s	
I/O interconnect	16*2*64b,66	16*2*64b,66	16*2*64b,66	
	MHz PCI	MHz PCI	MHz PCI	
I/O interconnect B/W	9600 MB/s	9600 MB/s	9600 MB/s	

1 TB System	3 TB System	10 TB System		
4 * 1000 MHz	4 * 1000 MHz	4 * 1000 MHz		
8 GB	8 GB	8 GB		
30,000 MB/s	30,000 MB/s	30,000 MB/s		
200 * 36 GB	600 * 36 GB	1800 * 36 GB		
200*5,000 MB/s	600*5,000 MB/s	1800*5,000 MB/s		
200*2,000 MB/s	600*2,000 MB/s	1800*2,000 MB/s		
29 MB/s	29 MB/s	29 MB/s		
500 MHz	500 MHz	500 MHz		
32 MB	32 MB	32 MB		
8*2Gbit/s	8*2Gbit/s	8*2Gbit/s		
	1 TB System 4 * 1000 MHz 8 GB 30,000 MB/s 200 * 36 GB 200*5,000 MB/s 200*2,000 MB/s 29 MB/s 500 MHz 32 MB 8*2Gbit/s	1 TB System 3 TB System 4 * 1000 MHz 4 * 1000 MHz 8 GB 8 GB 30,000 MB/s 30,000 MB/s 200 * 36 GB 600 * 36 GB 200*5,000 MB/s 600*5,000 MB/s 200*2,000 MB/s 600*2,000 MB/s 29 MB/s 29 MB/s 32 MB 32 MB 8*2Gbit/s 8*2Gbit/s		

TOTZ O

Case Study for IDISK: TPC-D Query 1

- * Scan 95% 97% of largest table ("lineitem") and compute aggregates
- * Tremendous reduction in data movement

Scale Factor	1 TB	3 TB	10 TB
Lineitem cardinality (rows)	~6 bill.	~18 bill.	~60 bill.
Lineitem size/Total data moved	~870	~2610	~8700
in SMP (GB)			
Total data moved in IDISK	~59	~176	~527
(KB)			

inst. per tuple	200	500	1000	1500	2000	3000	6000
1 TB							
SMP	157 (s)	157	157	215	285	426	849
IDISK	144	144	144	144	159	253	505
IDISK speedup	1.1x	1.1x	1.1x	1.5x	1.7x	1.7x	1.7x
3 TB							
SMP	293	293	418	620	823	1228	2443
IDISK	144	144	144	144	169	253	505
IDISK speedup	2.0x	2.0x	2.9x	4.3x	4.9x	4.9	4.8x
10 TB							
SMP	922	922	1329	1987	2645	3961	7910
IDISK	160	160	160	160	188	281	562
IDISK speedup	5.8x	5.8x	8.3x	12.4x	14.1x	14.1x	14.1x

*Table shows seconds to scan and process lineitem table *Speedups from embarrassingly parallel nature of task *IDISK processing scales better than SMP processing

Scans and certain object manipulations are obvious wins Scans and certain object manipulations are obvious wins What about sort, join, and aggregation operations? Does Amdahl's Law limit IDISK performance gains? Exactly how much time is spent doing operations that could be pushed to disk? Answer question by profiling commercial database and doing "atomic benchmarking" What's the right programming model? How to safely download code into disk? How do we get commercial databases to modularize code so that operations *can* be downloaded to disk processor?

25

Conclusions

* Decision support databases

- Increasingly important workload
- Storage and related computation requirements growing faster than processor speed increases
- Central server processors saturated: current system bottleneck
- ★ IDISK offers architectural alternative
 - Push processing to disk, rather than bringing data to CPU
 - Allows processing of system to scale with increasing storage demand
 - Overcomes pitfalls of previous research attempts
- * IDISK advantages
 - Improved performance from exploiting data parallelism
 - Incredible reduction in data movement
 - Reduced cost: trade expensive MIPs for cheap MIPs
- * Evolutionary path to completely decentralized system 26

TPC-D Q1 SELECT L_RETURNFLAG, L_LINESTATUS, SUM(L_QUANTITY) AS SUM_QTY, SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE, SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS SUM_DISC_PRICE, SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS SUM_CHARGE, AVG(L_QUANTITY) AS AVG_QTY, AVG(L_EXTENDEDPRICE) AS AVG_PRICE, AVG(L_DISCOUNT) AS AVG_DISC, COUNT(*) AS COUNT_ORDER FROM LINEITEM WHERE L_SHIPDATE <= DATE '12/1/98' - INTERVAL 'delta' DAYS GROUP BY L_RETURNFLAG, L_LINESTATUS ORDER BY L_RETURNFLAG, L_LINESTATUS; 32

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>